Aluminium alloys are alloys in which aluminium is the predominant metal. Typical alloying elements are copper, zinc, manganese, silicon, and magnesium. There are two principal classifications, namely casting alloys and wrought alloys, both of which are further subdivided into the categories heat-treatable and non-heat-treatable. About 85% of aluminium is used for wrought products, for example rolled plate, foils and extrusions. Cast aluminium alloys yield cost effective products due to the low melting point, although they generally have lower tensile strengths than wrought alloys. The most important cast aluminium alloy system is Al-Si, where the high levels of silicon (4-13%) contribute to give good casting characteristics. Aluminium alloys are widely used in engineering structures and components where light weight or corrosion resistance is required.[1]

Aluminium alloy surfaces will keep their apparent shine in a dry environment due to the formation of a clear, protective oxide layer. In a wet environment, Galvanic corrosion can occur when an aluminium alloy is placed in electrical contact with other metals with a more negative corrosion potential than aluminium.

Aluminium alloy compositions are registered with The Aluminum Association. Many organizations publish more specific standards for the manufacture of aluminium alloy, including the Society of Automotive Engineers standards organization, specifically its aerospace standards subgroups,[2] and ASTM International.

Engineering useEdit


Aluminium alloys with a wide range of properties are used in engineering structures. Alloy systems are classified by a number system (ANSI) or by names indicating their main alloying constituents (DIN and ISO). Selecting the right alloy for a given application entails considerations of strength, ductility, formability, workability, weldability and corrosion resistance to name a few. A brief historical overview of alloys and manufacturing technologies is given in Ref.[3] Aluminium is used extensively in modern aircraft due to its high strength to weight ratio.

Aluminium alloys versus steelsEdit

Aluminium alloys typically have an elastic modulus of around 70 GPa, which is about one third the elastic modulus of steel. For a given load, a part made of an aluminium alloy will therefore show greater elastic deformation than a steel part of identical geometry. Though there are aluminium alloys with higher tensile strengths than commonly used steels, simply replacing steel parts with aluminium alloy equivalents may lead to problems. With new products, design choices are often governed by the special manufacturing technologies that apply to aluminium. Extrusions are particularly important in this regard, owing to the ease of which aluminium alloys, particularly the Al-Mg-Si series, can be extruded from complex profiles.

In general, stiffer and lighter designs can be achieved with aluminium alloys than is feasible with steels. For instance, consider the bending of a thin-walled tube: the second moment of area is inversely related to the stress in the tube wall, i.e. stresses are lower for larger values. The second moment of area is proportional to the cube of the radius times the wall thickness, thus increasing the radius (and weight) by 26% will lead to a halving of the wall stress. For this reason, bicycle frames made of aluminium alloys make use of larger tube diameters than steel or titanium in order to yield the desired stiffness and strength. In automotive engineering, cars made of aluminium alloys employ space frames made of extruded profiles to ensure rigidity. This represents a radical change from the common approach for current steel car design, which depend on the body shells for stiffness, that is a unibody design.

Aluminium alloys are widely used in automotive engines, particularly in cylinder blocks and crankcases due to the weight savings that are possible. Since aluminium alloys are susceptible to warping at elevated temperatures, the cooling system of such engines is critical. Manufacturing techniques and metallurgical advancements have also been instrumental for the successful application in automotive engines. In the 1960s, the aluminium cylinder heads and crankcase of the Corvair earned a reputation for failure and stripping of threads, which is not seen in current aluminium cylinder heads.

An important structural limitation of aluminium alloys is their lower fatigue strength compared to steel. In controlled laboratory conditions, steels display a fatigue limit, which is the stress amplitude below which no failures occur. Aluminium alloys are therefore sparsely used in parts that require high fatigue strength in the high cycle regime (more than 107 stress cycles).

Heat sensitivity considerationsEdit

Often, the metal's sensitivity to heat must also be considered. Even a relatively routine workshop procedure involving heating is complicated by the fact that aluminium, unlike steel, will melt without first glowing red. Forming operations where a blow torch is used therefore require some expertise, because no visual signs reveal how close the material is to melting.

Aluminium also is subject to internal stresses and strains when it is overheated; the tendency of the metal to creep under these stresses tends to result in delayed distortions. For example, the warping or cracking of overheated aluminium automobile cylinder heads is commonly observed, sometimes years later, as is the tendency of welded aluminium bicycle frames to gradually twist out of alignment from the stresses of the welding process. Thus, the aerospace industry avoids heat altogether by joining parts with adhesives or mechanical fasteners. Adhesive bonding was used in some bicycle frames in the 1970s, with unfortunate results when the aluminium tubing corroded slightly, loosening the adhesive and collapsing the frame.

Stresses in overheated aluminium can be relieved by heat-treating the parts in an oven and gradually cooling it—in effect annealing the stresses. Yet these parts may still become distorted, so that heat-treating of welded bicycle frames, for instance, can result in a significant fraction becoming misaligned. If the misalignment is not too severe, the cooled parts may be bent into alignment. Of course, if the frame is properly designed for rigidity (see above), that bending will require enormous force.

Aluminium's intolerance to high temperatures has not precluded its use in rocketry; even for use in constructing combustion chambers where gases can reach 3500 K. The Agena upper stage engine used a regeneratively cooled aluminium design for some parts of the nozzle, including the thermally critical throat region; in fact the extremely high thermal conductivity of aluminium prevented the throat from reaching the melting point even under massive heat flux, resulting in a reliable lightweight component.

Household wiringEdit

Because of its high conductivity and relatively low price compared with copper in the 1960s, aluminium was introduced at that time for household electrical wiring in the United States, even though many fixtures had not been designed to accept aluminium wire. But the new use brought some problems:

  • The greater coefficient of thermal expansion of aluminium causes the wire to expand and contract relative to the dissimilar metal screw connection, eventually loosening the connection.
  • Pure aluminium has a tendency to "creep" under steady sustained pressure (to a greater degree as the temperature rises), again loosening the connection.
  • Galvanic corrosion from the dissimilar metals increases the electrical resistance of the connection.

All of this resulted in overheated and loose connections, and this in turn resulted in some fires. Builders then became wary of using the wire, and many jurisdictions outlawed its use in very small sizes, in new construction. Yet newer fixtures eventually were introduced with connections designed to avoid loosening and overheating. At first they were marked "Al/Cu", but they now bear a "CO/ALR" coding.

Another way to forestall the heating problem is to crimp the aluminium wire to a short "pigtail" of copper wire. A properly done high-pressure crimp by the proper tool is tight enough to reduce any thermal expansion of the aluminium. Today, new alloys, designs, and methods are used for aluminium wiring in combination with aluminium terminations.

Alloy designationsEdit

Wrought and cast aluminium alloys use different identification systems. Wrought aluminium is identified with a four digit number which identifies the alloying elements.

Cast aluminium alloys use a four to five digit number with a decimal point. The digit in the hundreds place indicates the alloying elements, while the digit after the decimal point indicates the form (cast shape or ingot).

Temper designationEdit

The temper designation follows the cast or wrought designation number with a dash, a letter, and potentially a one to three digit number, e.g. 6061-T6. The definitions for the tempers are:[4][5]

As fabricated
Strain hardened (cold worked) with or without thermal treatment
Strain hardened without thermal treatment
Strain hardened and partially annealed
Strain hardened and stabilized by low temperature heating
Second digit 
A second digit denotes the degree of hardness
-HX2 = 1/4 hard
-HX4 = 1/2 hard
-HX6 = 3/4 hard
-HX8 = full hard
-HX9 = extra hard
Full soft (annealed)
Heat treated to produce stable tempers
Cooled from hot working and naturally aged (at room temperature)
Cooled from hot working, cold-worked, and naturally aged
Solution heat treated and cold worked
Solution heat treated and naturally aged
Cooled from hot working and artificially aged (at elevated temperature)
Stress relieved by stretching
No further straightening after stretching
Minor straightening after stretching
Stress relieved by thermal treatment
Solution heat treated and artificially aged
Solution heat treated and stabilized
Solution heat treated, cold worked, and artificially aged
Solution heat treated, artificially aged, and cold worked
Cooled from hot working, cold-worked, and artificially aged
Solution heat treated only.

Note: -W is a relatively soft intermediary designation that applies after heat treat and before aging is completed. The -W condition can be extended at extremely low temperatures but not indefinitely and depending on the material will typically last no longer than 15 minutes at ambient temperatures.

Wrought alloys Edit

The International Alloy Designation System is the most widely accepted naming scheme for wrought alloys. Each alloy is given a four-digit number, where the first digit indicates the major alloying elements.

  • 1000 series are essentially pure aluminium with a minimum 99% aluminium content by weight and can be work hardened.
  • 2000 series are alloyed with copper, can be precipitation hardened to strengths comparable to steel. Formerly referred to as duralumin, they were once the most common aerospace alloys, but were susceptible to stress corrosion cracking and are increasingly replaced by 7000 series in new designs.
  • 3000 series are alloyed with manganese, and can be work-hardened.
  • 4000 series are alloyed with silicon. They are also known as silumin.
  • 5000 series are alloyed with magnesium, derive most of their strength from work hardening. It is suitable for cryogenic applications and low temperature work. However is susceptible to corrosion above 60°C.
  • 6000 series are alloyed with magnesium and silicon, are easy to machine, and can be precipitation hardened, but not to the high strengths that 2000, and 7000 can reach.
  • 7000 series are alloyed with zinc, and can be precipitation hardened to the highest strengths of any aluminium alloy.
  • 8000 series is a category mainly used for lithium alloys.
Wrought aluminium alloy composition limits (% weight)
Alloy Si Fe Cu Mn Mg Cr Zn V Ti Bi Ga Pb Zr Limits†† Al
Each Total
1060 0.25 0.35 0.05 0.03 0.03 0.03 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.03 99.6 min
1100 0.95 Si+Fe 0.05-0.20 0.05 0.10 0.05 0.15 99.0 min
2014 0.50-1.2 0.7 3.9-5.0 0.40-1.2 0.20-0.8 0.10 0.25 0.15 0.05 0.15 remainder
2024 0.50 0.50 3.8-4.9 0.30-0.9 1.2-1.8 0.10 0.25 0.15 0.05 0.15 remainder
2219 0.2 0.30 5.8-6.8 0.20-0.40 0.02 0.10 0.05-0.15 0.02-0.10 0.10-0.25 0.05 0.15 remainder
3003 0.6 0.7 0.05-0.20 1.0-1.5 0.10 0.05 0.15 remainder
3004 0.30 0.7 0.25 1.0-1.5 0.8-1.3 0.25 0.05 0.15 remainder
3102 0.40 0.7 0.10 0.05-0.40 0.30 0.10 0.05 0.15 remainder
4043 4.5-6.0 0.80 0.30 0.05 0.05 0.10 0.20 0.05 0.15 remainder
5052 0.25 0.40 0.10 0.10 2.2-2.8 0.15-0.35 0.10 0.05 0.15 remainder
5083 0.40 0.40 0.10 0.40-1.0 4.0-4.9 0.05-0.25 0.25 0.15 0.05 0.15 remainder
5086 0.40 0.50 0.10 0.20-0.7 3.5-4.5 0.05-0.25 0.25 0.15 0.05 0.15 remainder
5154 0.25 0.40 0.10 0.10 3.10-3.90 0.15-0.35 0.20 0.20 0.05 0.15 remainder
5356 0.25 0.40 0.10 0.10 4.50-5.50 0.05-0.20 0.10 0.06-0.20 0.05 0.15 remainder
5454 0.25 0.40 0.10 0.50-1.0 2.4-3.0 0.05-0.20 0.25 0.20 0.05 0.15 remainder
5456 0.25 0.40 0.10 0.50-1.0 4.7-5.5 0.05-0.20 0.25 0.20 0.05 0.15 remainder
6005 0.6-0.9 0.35 0.10 0.10 0.40-0.6 0.10 0.10 0.10 0.05 0.15 remainder
6005A 0.50-0.9 0.35 0.30 0.50 0.40-0.7 0.30 0.20 0.10 0.05 0.15 remainder
6060 0.30-0.6 0.10-0.30 0.10 0.10 0.35-0.6 0.5 0.15 0.10 0.05 0.15 remainder
6061 0.40-0.8 0.7 0.15-0.40 0.15 0.8-1.2 0.04-0.35 0.25 0.15 0.05 0.15 remainder
6063 0.20-0.6 0.35 0.10 0.10 0.45-0.9 0.10 0.10 0.10 0.05 0.15 remainder
6066 0.9-1.8 0.50 0.7-1.2 0.6-1.1 0.8-1.4 0.40 0.25 0.20 0.05 0.15 remainder
6070 1.0-1.7 0.50 0.15-0.40 0.40-1.0 0.50-1.2 0.10 0.25 0.15 0.05 0.15 remainder
6082 0.7-1.3 0.50 0.10 0.40-1.0 0.60-1.2 0.25 0.20 0.10 0.05 0.15 remainder
6105 0.6-1.0 0.35 0.10 0.10 0.45-0.8 0.10 0.10 0.10 0.05 0.15 remainder
6162 0.40-0.8 0.50 0.20 0.10 0.7-1.1 0.10 0.25 0.10 0.05 0.15 remainder
6262 0.40-0.8 0.7 0.15-0.40 0.15 0.8-1.2 0.04-0.14 0.25 0.15 0.40-0.7 0.40-0.7 0.05 0.15 remainder
6351 0.7-1.3 0.50 0.10 0.40-0.8 0.40-0.8 0.20 0.20 0.05 0.15 remainder
6463 0.20-0.6 0.15 0.20 0.05 0.45-0.9 0.05 0.05 0.15 remainder
7005 0.35 0.40 0.10 0.20-0.7 1.0-1.8 0.06-0.20 4.0-5.0 0.01-0.06 0.08-0.20 0.05 0.15 remainder
7072 0.7 Si+Fe 0.10 0.10 0.10 0.8-1.3 0.05 0.15 remainder
7075 0.40 0.50 1.2-2.0 0.30 2.1-2.9 0.18-0.28 5.1-6.1 0.20 0.05 0.15 remainder
7079 0.3 0.40 0.40-0.80 0.10-0.30 2.9-3.7 0.10-0.25 3.8-4.8 0.10 0.05 0.15 remainder
7116 0.15 0.30 0.50-1.1 0.05 0.8-1.4 4.2-5.2 0.05 0.05 0.03 0.05 0.15 remainder
7129 0.15 0.30 0.50-0.9 0.10 1.3-2.0 0.10 4.2-5.2 0.05 0.05 0.03 0.05 0.15 remainder
7178 0.40 0.50 1.6-2.4 0.30 2.4-3.1 0.18-0.28 6.3-7.3 0.20 0.05 0.15 remainder
Manganese plus chromium must be between 0.12-0.50%.</br>††This column lists the limits that apply to all elements, whether a table column exists for them or not, for which no other limits are specified.

Cast alloysEdit

The Aluminium Association (AA) has adopted a nomenclature similar to that of wrought alloys. British Standard and DIN have different designations. In the AA system, the second two digits reveal the minimum percentage of aluminium, e.g. 150.x correspond to a minimum of 99.50% aluminium. The digit after the decimal point takes a value of 0 or 1, denoting casting and ingot respectively.[1] The main alloying elements in the AA system are as follows:[citation needed]

  • 1xx.x series are minimum 99% aluminium
  • 2xx.x series copper
  • 3xx.x series silicon, copper and/or magnesium
  • 4xx.x series silicon
  • 5xx.x series magnesium
  • 7xx.x series zinc
  • 8xx.x series lithium
Minimum tensile requirements for cast aluminium alloys[6]
Alloy type Temper Tensile strength (min) [ksi] Yield strength (min) [ksi] Elongation in 2 in [%]
201.0 A02010 T7 60.0 50.0 3.0
204.0 A02040 T4 45.0 28.0 6.0
242.0 A02420 O 23.0 N/A N/A
T61 32.0 20.0 N/A
A242.0 A12420 T75 29.0 N/A 1.0
295.0 A02950 T4 29.0 13.0 6.0
T6 32.0 20.0 3.0
T62 36.0 28.0 N/A
T7 29.0 16.0 3.0
319.0 A03190 F 23.0 13.0 1.5
T5 25.0 N/A N/A
T6 31.0 20.0 1.5
328.0 A03280 F 25.0 14.0 1.0
T6 34.0 21.0 1.0
355.0 A03550 T6 32.0 20.0 2.0
T51 25.0 18.0 N/A
T71 30.0 22.0 N/A
C355.0 A33550 T6 36.0 25.0 2.5
356.0 A03560 F 19.0 9.5 2.0
T6 30.0 20.0 3.0
T7 31.0 N/A N/A
T51 23.0 16.0 N/A
T71 25.0 18.0 3.0
A356.0 A13560 T6 34.0 24.0 3.5
T61 35.0 26.0 1.0
443.0 A04430 F 17.0 7.0 3.0
B443.0 A24430 F 17.0 6.0 3.0
512.0 A05120 F 17.0 10.0 N/A
514.0 A05140 F 22.0 9.0 6.0
520.0 A05200 T4 42.0 22.0 12.0
535.0 A05350 F 35.0 18.0 9.0
705.0 A07050 T5 30.0 17.0 5.0
707.0 A07070 T7 37.0 30.0 1.0
710.0 A07100 T5 32.0 20.0 2.0
712.0 A07120 T5 34.0 25.0 4.0
713.0 A07130 T5 32.0 22.0 3.0
771.0 A07710 T5 42.0 38.0 1.5
T51 32.0 27.0 3.0
T52 36.0 30.0 1.5
T6 42.0 35.0 5.0
T71 48.0 45.0 5.0
850.0 A08500 T5 16.0 N/A 5.0
851.0 A08510 T5 17.0 N/A 3.0
852.0 A08520 T5 24.0 18.0 N/A
Only when requested by the customer

Named alloysEdit


Aerospace alloysEdit

Scandium-Aluminum Edit

File:Mig-29 on landing.jpg

The addition of scandium to aluminium creates nanoscale Al3Sc precipitates which limit the excessive grain growth that occurs in the heat-affected zone of welded aluminium components. This has two beneficial effects: the precipitated Al3Sc forms smaller crystals than are formed in other aluminium alloys[7] and the width of precipitate-free zones that normally exist at the grain boundaries of age-hardenenable aluminium alloys is reduced.[7] Scandium is also a potent grain refiner in cast aluminum alloys, and atom for atom, the most potent strengthener in aluminum, both as a result of grain refinement and precipitation strengthening. However, titanium alloys, which are stronger but heavier, are cheaper and much more widely used.[8]

The main application of metallic scandium by weight is in aluminium-scandium alloys for minor aerospace industry components. These alloys contain between 0.1% and 0.5% (by weight) of scandium. They were used in the Russian military aircraft Mig 21 and Mig 29.[7]

Some items of sports equipment, which rely on high performance materials, have been made with scandium-aluminium alloys, including baseball bats [9], lacrosse sticks, as well as bicycle[10] frames and components. U.S. gunmaker Smith & Wesson produces revolvers with frames composed of scandium alloy and cylinders of titanium. [11]

List of aerospace Aluminum alloys Edit

The following aluminium alloys are commonly used in aircraft and other aerospace structures:[12]

Note that the term aircraft aluminium or aerospace aluminium usually refers to 7075.[13][14]

The following list of aluminium alloys are currently produced,[citation needed] but less widely[citation needed] used:

Marine alloysEdit

These alloys are used for boat building and shipbuilding, and other marine and salt-water sensitive shore applications.[15]

Automotive alloysEdit

6111 aluminium is extensively used for automotive body panels.[citation needed]


  1. 1.0 1.1 I. J. Polmear, Light Alloys, Arnold, 1995
  2. SAE aluminium specifications list, accessed Oct 8, 2006. Also SAE Aerospace Council, accessed Oct 8, 2006.
  3. R.E. Sanders, Technology Innovation in aluminium Products, The Journal of The Minerals, 53(2):21–25, 2001. Online ed.
  4. Template:Cite web
  5. Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2003). Materials and Processes in Manufacturing (9th ed.). Wiley. p. 133. ISBN 0-471-65653-4. 
  6. ASTM B 26 / B 26M — 05
  7. 7.0 7.1 7.2 7.3 Ahmad, Zaki (2003). "The properties and application of scandium-reinforced aluminum". JOM 55: 35. doi:10.1007/s11837-003-0224-6. 
  8. ed. by James A. Schwarz ... (2004-03-31). James A. Schwarz, Cristian I. Contescu, Karol Putyera. CRC Press. p. 2274. ISBN 0824750497. 
  9. Bjerklie, Steve (2006). "A batty business: Anodized metal bats have revolutionized baseball. But are finishers losing the sweet spot?". Metal Finishing 104: 61. doi:10.1016/S0026-0576(06)80099-1. 
  10. Template:Cite web
  11. Template:Cite web
  12. Fundamentals of Flight, Shevell, Richard S., 1989, Englewood Cliffs, Prentice Hall, ISBN 0-13-339060-8, Ch 18, pp 373-386.
  13. Template:Cite web
  14. Template:Cite web
  15. Boatbuilding with aluminium, Stephen F. Pollard, 1993, International Marine, ISBN 0-07-050426-1


External linksEdit


de:Aluminiumlegierung es:Aleaciones de aluminio it:Leghe di alluminio he:סגסוגת אלומיניום ja:アルミニウム合金 no:Aluminiumlegering pl:Stopy aluminium sl:Aluminijeva zlitina vi:Hợp kim của nhôm zh:鋁合金

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.