Fandom

BikeParts Wiki

Belt (mechanical)

474pages on
this wiki
Add New Page
Talk0 Share
File:Keilriemen-V-Belt.png
File:Flachriemen.png
File:HagleyBeltDrive01.jpg

A belt is a loop of flexible material used to link two or more rotating shafts mechanically. Belts may be used as a source of motion, to transmit power efficiently, or to track relative movement. Belts are looped over pulleys. In a two pulley system, the belt can either drive the pulleys in the same direction, or the belt may be crossed, so that the direction of the shafts is opposite. As a source of motion, a conveyor belt is one application where the belt is adapted to continually carry a load between two points.

Power transmission Edit

Belts are the cheapest utility for power transmission between shafts that may not be axially aligned. Power transmission is achieved by specially designed belts and pulleys. The demands on a belt drive transmission system are large and this has led to many variations on the theme. They run smoothly and with little noise, and cushion motor and bearings against load changes, albeit with less strength than gears or chains. However, improvements in belt engineering allow use of belts in systems that only formerly allowed chains or gears.

Pros and consEdit

Belt drive, moreover, is simple, inexpensive, and does not require axially aligned shafts. It helps protect the machinery from overload and jam, and damps and isolates noise and vibration. Load fluctuations are shock-absorbed (cushioned). They need no lubrication and minimal maintenance. They have high efficiency (90-98%, usually 95%), high tolerance for misalignment, and are inexpensive if the shafts are far apart. Clutch action is activated by releasing belt tension. Different speeds can be obtained by step or tapered pulleys.

The angular-velocity ratio may not be constant or equal to that of the pulley diameters, due to slip and stretch. However, this problem has been largely solved by the use of toothed belts. Temperatures ranges from Template:Convert to Template:Convert. Adjustment of center distance or addition of an idler pulley is crucial to compensate for wear and stretch.

Flat belts Edit

File:Transmissionsriemen.jpg

Flat belts were used early in line shafting to transmit power in factories.[1] It is a simple system of power transmission that was well suited for its day. It delivered high power for high speeds (500 hp for 10,000 ft/min), in cases of wide belts and large pulleys. These drives are bulky, requiring high tension leading to high loads, so vee belts have mainly replaced the flat-belts except when high speed is needed over power. The Industrial Revolution soon demanded more from the system, and flat belt pulleys needed to be carefully aligned to prevent the belt from slipping off. Because flat belts tend to climb towards the higher side of the pulley, pulleys were made with a slightly convex or "crowned" surface (rather than flat) to keep the belts centered. Flat belts also tend to slip on the pulley face when heavy loads are applied and many proprietary dressings were available that could be applied to the belts to increase friction, and so power transmission. Grip was better if the belt was assembled with the hair (i.e. outer) side of the leather against the pulley although belts were also often given a half-twist before joining the ends (forming a Möbius strip), so that wear was evenly distributed on both sides of the belt (DB). Belts were joined by lacing the ends together with leather thonging,[2][3] or later by steel comb fasteners.[4] A good modern use for a flat belt is with smaller pulleys and large central distances. They can connect inside and outside pulleys, and can come in both endless and jointed construction.

Round belts Edit

Round belts are a circular cross section belt designed to run in a pulley with a circular (or near circular) groove. They are for use in low torque situations and may be purchased in various lengths or cut to length and joined, either by a staple, gluing or welding (in the case of polyurethane). Early sewing machines utilized a leather belt, joined either by a metal staple or glued, to a great effect.

Vee belts Edit

File:Yanmar 2GM20.JPG

Vee belts (also known as V-belt or wedge rope) solved the slippage and alignment problem. It is now the basic belt for power transmission. They provide the best combination of traction, speed of movement, load of the bearings, and long service life. The V-belt was developed in 1917 by John Gates of the Gates Rubber Company. They are generally endless, and their general cross-section shape is trapezoidal. The "V" shape of the belt tracks in a mating groove in the pulley (or sheave), with the result that the belt cannot slip off. The belt also tends to wedge into the groove as the load increases — the greater the load, the greater the wedging action — improving torque transmission and making the vee belt an effective solution, needing less width and tension than flat belts. V-belts trump flat belts with their small center distances and high reduction ratios. The preferred center distance is larger than the largest pulley diameter, but less than three times the sum of both pulleys. Optimal speed range is 1000–7000 ft/min. V-belts need larger pulleys for their larger thickness than flat belts. They can be supplied at various fixed lengths or as a segmented section, where the segments are linked (spliced) to form a belt of the required length. For high-power requirements, two or more vee belts can be joined side-by-side in an arrangement called a multi-V, running on matching multi-groove sheaves. The strength of these belts is obtained by reinforcements with fibers like steel, polyester or aramid (e.g. Twaron or Kevlar). This is known as a multiple-belt drive. When an endless belt does not fit the need, jointed and link vee-belts may be employed. However they are weaker and only usable at speeds up to 4000 ft/min. A link v-belt is a number of rubberized fabric links held together by metal fasteners. They are length adjustable by dissasembling and removing links when needed.

Multi-Groove belts Edit

Used in modern automotive applications to drive many or all accessories on the engine, more commonly known as a serpentine belt. Belt is made up of usually 5 or 6 "V" shapes along side each other.

Ribbed belt Edit

A ribbed belt is a power transmission belt featuring lengthwise grooves. It operates from contact between the ribs of the belt and the grooves in the pulley. Its single-piece structure it reported to offer an even distribution of tension across the width of the pulley where the belt is in contact, a power range up to 600 kW, a high speed ratio, serpentine drives (possibility to drive off the back of the belt), long life, stability and homogeneity of the drive tension, and reduced vibration. The ribbed belt may be fitted on various applications : compressors, fitness bikes, agricultural machinery, food mixers, washing machines, lawn mowers, etc.[5]

Film beltsEdit

Though often grouped with flat belts, they are actually a different kind. They consist of a very thin belt (0.5-15 millimeters or 100-4000 micrometres) strip of plastic and occasionally rubber. They are generally intended for low-power (10 hp or 7 kW), high-speed uses, allowing high efficiency (up to 98%) and long life. These are seen in business machines, printers, tape recorders, and other light-duty operations.

Timing belts Edit

File:Timing belt.jpg
File:F8hub.jpg

Timing belts, (also known as Toothed, Notch, Cog, or Synchronous belts) are a positive transfer belt and can track relative movement. These belts have teeth that fit into a matching toothed pulley. When correctly tensioned, they have no slippage, run at constant speed, and are often used to transfer direct motion for indexing or timing purposes (hence their name). They are often used in lieu of chains or gears, so there is less noise and a lubrication bath is not necessary. Camshafts of automobiles, miniature timing systems, and stepper motors often utilize these belts. Timing belts need the least tension of all belts, and are among the most efficient. They can bear up to 200 hp (150 kW) at speeds of 16,000 ft/min.

Timing belts with a helical offset tooth design are available. The helical offset tooth design forms a chevron pattern and causes the teeth to engage progressively. The chevron pattern design is self-aligning. The chevron pattern design does not make the noise that some timing belts make at idiosyncratic speeds, and is more efficient at transferring power (up to 98%).

Disadvantages include a relatively high purchase cost, the need for specially fabricated toothed pulleys, less protection from overloading and jamming, and the lack of clutch action.

Specialty belts Edit

Belts normally transmit power on the tension side of the loop. However, designs for continuously variable transmissions exist that use belts that are a series of solid metal blocks, linked together as in a chain, transmitting power on the compression side of the loop.

Rolling roadsEdit

Belts used for rolling roads for wind tunnels can be capable of 250 km/h.[6]

Flying rope Edit

For transmission of mechanical power over distance without electrical energy, a flying rope can be used[7]. A wire or manila rope can be used to transmit mechanical energy from a steam engine or water wheel to a factory or pump which is located a considerable distance (10 to 100s of meters or more) from the power source. A flying rope way could be supported on poles and pulleys similar to the cable on a chair lift or aerial tramway. Transmission efficiency is generally high.

Standards for useEdit

The open belt drive has parallel shafts rotating in the same direction, whereas the cross-belt drive also bears parallel shafts but rotate in opposite direction. The former is far more common, and the latter not appropriate for timing and standard V-belts, because the pulleys contact both the both inner and outer belt surfaces. Nonparallel shafts can be connected if the belt's center line is aligned with the center plane of the pulley. Industrial belts are usually reinforced rubber but sometimes leather types, non-leather non-reinforced belts, can only be used in light applications.

The pitch line is the line between the inner and outer surfaces that is neither subject to tension (like the outer surface) nor compression (like the inner). It is midway through the surfaces in film and flat belts and dependent on cross-sectional shape and size in timing and V-belts. Calculating pitch diameter is an engineering task and is beyond the scope of this article. The angular speed is inversely proportional to size, so the larger the one wheel, the less angular velocity, and vice versa. Actual pulley speeds tend to be 0.5–1% less than generally calculated because of belt slip and stretch. In timing belts, the inverse ratio teeth of the belt contributes to the exact measurement. The speed of the belt is:

Speed = Circumference based on pitch diameter × angular speed in rpm

Selection criteriaEdit

Belt drives are built under the following required conditions: speeds of and power transmitted between drive and driven unit; suitable distance between shafts; and appropriate operating conditions. The equation for power is:

power (kW) = (torque in newton-meters) × (rpm) × (2π radians)/(60 sec × 1000 W)

Factors of power adjustment include speed ratio; shaft distance (long or short); type of drive unit (electric motor, internal combustion engine); service environment (oily, wet, dusty); driven unit loads (jerky, shock, reversed); and pulley-belt arrangement (open, crossed, turned). These are found in engineering handbooks and manufacturer's literature. When corrected, the horsepower is compared to rated horsepowers of the standard belt cross sections at particular belt speeds to find a number of arrays that will perform best. Now the pulley diameters are chosen. It is generally either large diameters or large cross section that are chosen, since, as stated earlier, larger belts transmit this same power at low belt speeds as smaller belts do at high speeds. To keep the driving part at its smallest, minimum-diameter pulleys are desired. Minimum pulley diameters are limited by the elongation of the belt's outer fibers as the belt wraps around the pulleys. Small pulleys increase this elongation, greatly reducing belt life. Minimum pulley diameters are often listed with each cross section and speed, or listed separately by belt cross section. After the cheapest diameters and belt section are chosen, the belt length is computed. If endless belts are used, the desired shaft spacing may need adjusting to accommodate standard length belts. It is often more economical to use two or more juxtaposed V-belts, rather than one larger belt.

In large speed ratios or small central distances, the angle of contact between the belt and pulley may be less than 180°. If this is the case, the drive power must be further increased, according to manufacturer's tables, and the selection process repeated. This is because power capacities are based on the standard of a 180° contact angle. Smaller contact angles mean less area for the belt to obtain traction, and thus the belt carries less power.

Belt frictionEdit

Belt drives depend on friction to operate but, if the friction is excessive, there will be waste of energy and rapid wear of the belt. Factors which affect belt friction include belt tension, contact angle and the materials from which the belt and pulleys are made.

Belt tensionEdit

Power transmission is a function of belt tension. However, also increasing with tension is stress (load) on the belt and bearings. The ideal belt is that of the lowest tension which does not slip in high loads. Belt tensions should also be adjusted to belt type, size, speed, and pulley diameters. Belt tension is determined by measuring the force to deflect the belt a given distance per inch of pulley. Timing belts need only adequate tension to keep the belt in contact with the pulley.

Belt wearEdit

Fatigue, more so than abrasion, is the culprit for most belt problems. This wear is caused by stress from rolling around the pulleys. High belt tension; excessive slippage; adverse environmental conditions; and belt overloads caused by shock, vibration, or belt slapping all contribute to belt fatigue.

SpecificationsEdit

To fully specify a belt, the material, length, and cross-section size and shape are required. Timing belts, in addition, require that the size of the teeth be given. The length of the belt is the sum of the central length of the system on both sides, half the circumference of both pulleys, and the square of the sum (if crossed) or the difference (if open) of the radii. Thus, when dividing by the central distance, it can be visualized as the central distance times the height that gives the same squared value of the radius difference on, of course, both sides. When adding to the length of either side, the length of the belt increases, in a similar manner to the Pythagorean theorem. One important concept to remember is that as D1 gets closer to D2 there is less of a distance (and therefore less addition of length) until its approaches zero.

On the other hand, in a crossed belt drive the sum rather than the difference of radii is the basis for computation for length. So the wider the small drive increases, the belt length is higher.

See alsoEdit

ReferencesEdit

Template:Gearsde:Treibriemen es:Correa de transmisión fr:Courroie it:Cinghia hu:Szíjhajtás nl:Aandrijfriem ja:ベルト (機械) no:Drivreim nn:Drivreim pl:Przekładnia pasowa pt:Correia (mecânica) ro:Curea de transmisie ru:Ремённая передача scn:Cigna sr:Ремени пријенос fi:Kiilahihna sv:Fläktrem

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.